AI // MACHINE LEARNING // QUANTUM
Week 8: Physical Implementation of Qubits: Harmonic Oscillators and Superconductors | ECE 802-730
Week 8: Physical Implementation of Qubits: Harmonic Oscillators and Superconductors | ECE 802-730

Week 8: Physical Implementation of Qubits: Harmonic Oscillators and Superconductors | ECE 802-730

Exercise 1

The Schrödinger equation is given as: \Psi_{E_{n}}(x) = C_{n}H_{n}\left(\sqrt{\frac{m\omega_{0}}{\hbar}}x\right)e^{-\frac{m\omega_{0}}{2\hbar}x^{2}}

For the lowest energy level state (n=0), write the solution of \Psi(x). Then substitute it back in the Schrödinger equation and show it’s a solution. Use the time independent Schrödinger equation:

\left[\frac{-\hbar^{2}}{2m}\frac{\delta^{2}}{\deltax^2}+\frac{kx^{2}}{2}\right]\Psi_{E_{n}}(x) = E_{n} \Psi_{En}^{x}

\Psi_{E_{n}}(x) = C_{n}H_{n}\left(\sqrt{\frac{m\omega_{0}}{\hbar}}x\right)e^{-\frac{m\omega_{0}}{2\hbar}x^{2}}

Which is equivalent to,

\frac{d^{2}H_n(u)}{du^{2}} - 2u\frac{dH_{n}(u)}{du} + 2\left(\frac{E_n}{\hbar\omega_{0}} - \frac{1}{2}\right)H_{n}(u) = 0

If n = 0 then we know, H_n(u) = 1; because H_n(u) is a Hermite Polynomial

Therefore,

\Psi_{0}(x) = C_{0}(1)\left(e^{\frac{-m\omega}{2\hbar}x^{2}}\right)

\Psi_{0}(x) = C_{0}e^{\frac{-m\omega}{2\hbar}x^{2}}

Plugged back into the time independent Schrödinger equation, we have:

\left(-\frac{\hbar^{2}}{2m}\frac{\delta^{2}}{\deltax^{2}} + \frac{kx^{2}}{2}\right)\Psi_{E_{n}}(x) = E_{n}\Psi_{n}(x)

Where, n = 0:

= -\frac{\hbar C_{0}}{2m}\left[\frac{\delta}{\delta x}\left(-\frac{2m\omega_{0}x}{2\hbar}e^{-\frac{m\omega_{0}}{2\hbar}x^{2}}\right)\right] + \frac{C_{0}k}{2}x^{2}e^{-\frac{m_\omega_{0}}{2\hbar}x^{2}}

= \frac{2m\omega_{0} \hbar^{2} C_{0}}{4m\hbar}\left[\frac{\delta}{\delta x}\left(xe^{-\frac{m\omega_{0}}{2\hbar}x^{2}}\right)\right] + \frac{C_{0}k}{2}x^{2}e^{-\frac{m_\omega_{0}}{2\hbar}x^{2}}

= \frac{C_{0}\omega{0}\hbar}{2}\left[x\left(-\frac{2m\omega_{0}x}{2\hbar}\right)e^{-\frac{m\omega_{0}}{2\hbar}x^{2}}\right] + \frac{C_{0}kx^{2}}{2}e^{-\frac{m\omega_{0}}{2\hbar}x^{2}}

= \left[-\frac{m\omega_{0}^{2}}{2}C_{0}x^{2} + \frac{\hbar\omega_{0}C_{0}}{2} + \frac{C_{0}kx^{2}}{2}\right]e^{-\frac{m\omega_{0}}{2\hbar}x^{2}}

= \left[-\frac{m\omega_{0}^{2}}{2}x^{2} + \frac{\hbar\omega_{0}}{2} + \frac{kx^{2}}{2}\right]C_{0}e^{-\frac{m\omega_{0}}{2\hbar}x^{2}}

=\left(\frac{\hbar\omega_{0}}{2} + \frac{kx^{2}}{2} - \frac{m\omega_{0}^{2}x^{2}}{2}\right)\Psi_{0}(x)

Therefore,

\Psi_{0}(x) = C_{0}e^{-\frac{m\omega_0x^{2}}{2\hbar}}

Exercise 2

The expectation value of a variable x is given by \int_{\infty}^{-\infty}\Psi^{*}x\Psi dx. Show for the lowest energy state of the quantum harmonic oscillator that the expected value of the position x is zero.

<x> = \int_{\infty}^{-\infty}\Psi_{0^{n}}n \Psi_{0^{n}}dn

= C_{0}^{2} \int_{\infty}^{-\infty}e^{\frac{m\omega}{\hbar}n^{2}}dn

f(n) = ne^{\frac{m\omega}{\hbar}n^{2}} where <x> = 0

Therefore,

\int{\infty}{-\infty}f(n)dn = 0

Exercise 3

What is the Josephson oscillation frequency for a 0.5V potential drop across a junction? Is this frequency change detectable by standard electronics? What voltage drop would give a Josephson oscillation frequency of 10GHz?

\omega = \frac{2e}{\hbar}\Delta V

If e = 1.602 \times 10^{-19}C, \hbar = 6.626 \times 10^{-34} and \Delta V = .5

Then,

\omega = \frac{2(1.602 \times 10^{-19}C)}{6.626 \times 10^{-34}}(.5)

\omega = 241.775 GHz*

*This frequency isn’t detectable by standard electronics

If \omega = 10GHz

10GHz = \frac{2e}{\hbar}\Delta V

\Delta V = \frac{10GHz}{483.55 \times 10^{3}}

Therefore,

\Delta V = 20.680mV

Leave a Reply

%d bloggers like this: