AI // MACHINE LEARNING // QUANTUM
Week 6: MEASUREMENT OF MULTI-QUBIT SYSTEMS | ECE 802-730
Week 6: MEASUREMENT OF MULTI-QUBIT SYSTEMS | ECE 802-730

Week 6: MEASUREMENT OF MULTI-QUBIT SYSTEMS | ECE 802-730

Coursework focused on Chapter 4 & 5 of Quantum Computing: A Gentle Introduction.

Exercise 4.1

Give the matrix, in the standard basis, for the following operators:

a. |0\rangle \langle 0| \rightarrow \left(^1_0\right)\left(10\right) = \left(1000\right)


b. |+\rangle \langle 0| - i|-\rangle \langle 1|

= \frac{1}{\sqrt{2}}((|0\rangle + |1\rangle)\langle0|) - i(\frac{1}{\sqrt{2}}((|0\rangle - |1\rangle)\langle1|)

= \frac{1}{\sqrt{2}}(1 0 0 0)(0 0 1 0) - i(\frac{1}{\sqrt{2}}(0 1 0 0)(0001)

= \frac{1}{\sqrt{2}}(1 0 1 0) - (0 i 0 -i)

= \frac{1}{\sqrt{2}}(1 -i 1 i)

c. |00\rangle\langle00| + |01\rangle\langle01|

= (1 0 0 0)(1 0 0 0) + (0 1 0 0)(0 1 0 0)

=(1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0)

d. |00\rangle\langle00| + |01\rangle\langle01| + |11\rangle\langle01| + |10\rangle\langle11|

= (1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) + (0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0)

+ (0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0) + (0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0)

=(1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0)

Exercise 4.2

Write the following operators in bra/ket notation:

a. The Hadamard operator: H = \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} -\frac{1}{\sqrt{2}}\right)

= \frac{1}{\sqrt{2}}\left(|0\rangle\langle0| + |0\rangle\langle1| + |1\rangle\langle0| - |1\rangle\langle1|\right)


b. X = \left(0 1 1 0\right)

= |0\rangle\langle1| + |1\rangle\langle0|


c. Y = (0 1 - 1 0)

= |0\rangle\langle1| - |1\rangle\langle0|


d. Z = \left(1 0 0 -1\right)

= |0\rangle\langle0| - |1\rangle\langle1|


e. \left(23 0 0 0 0 -5 0 0 0 0 0 0 0 0 0 9\right)

= 23(|00\rangle\langle00|) - 5(|01\rangle\langle01|) + 9\left(|11\rangle\langle11|\right)

Exercise 4.7

Using the projection operator formalism:



a. Compute the probability of each of the possible outcomes of measuring the first qubit of an arbitrary two-qubit state in the Hadamard basis \left{|+\rangle, |-\rangle\right}


P_{+} = |+\rangle\langle+| = \frac{1}{2}\left(|0\rangle\langle0| + |1\rangle\langle0| + |1\rangle\langle1|\right)

P_{-} = \frac{1}{2}\left(|0\rangle\langle0| - |0\rangle\langle1| - |01\rangle\langle0| - |1\rangle\langle1|\right)

|\Psi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle +a_{11}|11\rangle

I = |0\rangle\langle0| + |1\rangle\langle1|

P_{+} \otimes I = \frac{1}{2}\left(|0\rangle\langle0| + |0\rangle\langle1| + |1\rangle\langle0| + |1\rangle\langle1|\right)

P_{+} \otimes I = \frac{1}{2}\left(|00\rangle\langle00| + |00\rangle\langle10| + |10\rangle\langle00| + |10\rangle\langle10| + |01\rangle\langle01| + |01\rangle\langle11| + |11\rangle\langle01| + |11\rangle\langle11|

|\left(P_{+} \otimes I\left)|\Psi\rangle^{2} = | \frac{1}{2}\left[a_{00}\left(|00\rangle + |10\rangle\right) + a_{01}\left(|01\rangle + |11\rangle\right) + a_{10}\left(|00\rangle + |10\rangle\right) + a_{11}\left(|01\rangle + |11\rangle\right)\right]|^{2}

= \frac{1}{4}|\left(a_{00} + a_{10}\right)|00\rangle + \left(a_{01} + a_{11}\right)|01\rangle + \left(a_{00} + a_{10}\right)|10\rangle + \left(a_{01} + a_{11}\right)|11\rangle|^{2}

= \frac{1}{2}\left(|a_{00} + a_{10}|^{2} + |a_{01} + a_{11}|^{2}\right)

AND

P_{-} \otimes I = \frac{1}{2}\left(|0\rangle\langle0| - |0\rangle\langle1| - |1\rangle\langle0| - |1\rangle\langle1|\right) \otimes |0\rangle\langle0| + |1\rangle\langle1|

P_{+} \otimes I = \frac{1}{2}\left(|00\rangle\langle00| - |00\rangle\langle10| - |10\rangle\langle00| + |10\rangle\langle10| + |01\rangle\langle01| - |01\rangle\langle11| - |11\rangle\langle01| + |11\rangle\langle11|

|\left(P_{+} \otimes I\left)|\Psi\rangle^{2} = | \frac{1}{2}\left[a_{00}\left(|00\rangle - |10\rangle\right) + a_{01}\left(|01\rangle - |11\rangle\right) + a_{10}\left(-|00\rangle + |10\rangle\right) + a_{11}\left(-|01\rangle + |11\rangle\right)\right]|^{2}

= \frac{1}{4}|\left(a_{00} - a_{10}\right)|00\rangle + \left(a_{01} - a_{11}\right)|01\rangle + \left(-a_{00} + a_{10}\right)|10\rangle + \left(-a_{01} + a_{11}\right)|11\rangle|^{2}

= \frac{1}{2}\left(|a_{00} - a_{10}|^{2} + |a_{01} - a_{11}|^{2}\right)

Probability of measuring |+\rangle = |\left(P_{+} \otimes I\right)|\Psi\rangle|^{2} = \frac{1}{2}\left(|a_{00} + a_{10}|^{2} + |a_{01} + a_{11}|^{2}\right)

Probability of measuring |-\rangle = |\left(P_{-} \otimes I\right)|\Psi\rangle|^{2} = \frac{1}{2}\left(|a_{00} - a_{10}|^{2} + |a_{01} - a_{11}|^{2}\right)

b. Compute the probability of each outcome for such a measurement on the state |\Psi^{+}\rangle = \frac{1}{\sqrt{2}}\left(|00\rangle + |11\rangle\right)


a_{00} = a_{11} = \frac{1}{\sqrt{2}} and a_{01} = a_{10} = 0

Probability of measuring |+\rangle = |\left(P_{+} \otimes I\right)|\Psi\rangle|^{2} = \frac{1}{2}\left(|a_{00} + a_{10}|^{2} + |a_{01} + a_{11}|^{2}\right) = \frac{1}{2}

Probability of measuring |-\rangle = |\left(P_{-} \otimes I\right)|\Psi\rangle|^{2} = \frac{1}{2}\left(|a_{00} - a_{10}|^{2} + |a_{01} - a_{11}|^{2}\right) = \frac{1}{2}

Exercise 4.14

Give the outcomes and their probabilities for measurement of a general two-qubit state |\Psi\rangle = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle with respect to the Bell decomposition.



P_{\Phi}^{+} = \frac{1}{2}\left(|00\rangle\langle00| + |11\rangle\langle00| + |00\rangle\langle11| + |11\rangle\langle11|\right)

P_{\Phi}^{-} = \frac{1}{2}\left(|00\rangle\langle00| - |11\rangle\langle00| - |00\rangle\langle11| + |11\rangle\langle11|\right)

P_{\Psi}^{+} = \frac{1}{2}\left(|00\rangle\langle00| + |11\rangle\langle00| + |00\rangle\langle11| + |11\rangle\langle11|\right)

P_{\Psi}^{-} = \frac{1}{2}\left(|00\rangle\langle00| - |11\rangle\langle00| - |00\rangle\langle11| + |11\rangle\langle11|\right)

|\Psi\rangle = a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle

P_{\Phi}^{+|\Psi\rangle = \frac{a + d}{2}\left(|00\rangle + |11\rangle\right)

P_{\Phi}^{-|\Psi\rangle = \frac{a - d}{2}\left(|00\rangle - |11\rangle\right)

P_{\Psi}^{+|\Psi\rangle = \frac{b + c}{2}\left(|01\rangle + |10\rangle\right)

P_{\Psi}^{-|\Psi\rangle = \frac{b - c}{2}\left(|01\rangle + |10\rangle\right)


\langle\Psi|P_{\Phi}^{+}|\Psi\rangle = \frac{|a + d|^{2}}{2}

\langle\Psi|P_{\Phi}^{-}|\Psi\rangle = \frac{|a - d|^{2}}{2}

\langle\Psi|P_{\Psi}^{+}|\Psi\rangle = \frac{|b + c|^{2}}{2}

\langle\Psi|P_{\Psi}^{-}|\Psi\rangle = \frac{|b - c|^{2}}{2}

Exercise 5.4

Prove that the following are decompositions for some of the standard gates.

I = K(0)T(0)R(0)T(0) \rightarrow IIII = I


X = -iT(\frac{\pi}{2})R(\frac{\pi}{2})T(0)

(T(\frac{\pi}{2}) = (i 0 0 -i)

R(\frac{\pi}{2}) = (0 1 -1 0)

-iT(\frac{\pi}{2})R(\frac{\pi}{2})T(0) = -i(i 0 0 -i)(0 1 -1 0)I = -i(0 i i 0) = (0 1 1 0) = X

H = -iT\left(\frac{\pi}{2}\right)R\left(\frac{\pi}{4}\right)T(0)

-iT\left(\frac{\pi}{2}\right)R\left(\frac{\pi}{4}\right)T(0) = -i(0 i i 0)\left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} -\frac{1}{\sqrt{2}}\right)I

= (0 i i 0)\left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} -\frac{1}{\sqrt{2}}\right) = \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\right)

H = \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\right)

Exercise 5.6

a. Show that R(\alpha) is a rotation of 2(\alpha) about the y-axis of the Bloch sphere

R(\alpha) = ( cos cos \alpha sin sin \alpha -sin sin \alpha cos cos \alpha)

\sigma_{y} = (0 -i i 0)

\sigma^{\rightarrow} = (\hat{\sigma}x, \hat{\sigma}y, \hat{\sigma}z)

e^{i\theta(\hat{\pi}\cdot\overrightarrow{\sigma})} = \hat{I}cos{\theta} + i(\hat{n} \cdot \overrightarrow{\sigma})sin{\theta}

IF \hat{n} = \hat{y} AND \theta = \alpha

e^{i\alpha\hat{\sigma}_{y}} = \hat{I} cos cos{\alpha}} + i\hat{\sigma}_{y} sin sin{\alpha} = (cos cos{\alpha} 0 0 cos cos{\alpha}) + (0 \alpha i sin sin{\alpha} 0)

Therefore, R(\alpha) = (cos cos{\alpha} sin sin{\alpha} - sin sin{\alpha} cos cos{\alpha})

b. Show that T(\beta) is a rotation of 2(\beta) about the z-axis of the Bloch sphere

T(\beta) = (e^{i\beta} 0 0 e^{-i\beta})

\sigma_{z} = (1 0 0 -1)

e^{i\theta(\hat{n}\cdot\overrightarrow{\sigma})} = \hat{I}cos{\theta} + i(\hat{n} \cdot \overrightarrow{\sigma})sin{\theta}

IF \hat{n} = \hat{z} AND \theta = \beta

e^{i\Beta\hat{\sigma}_{z}} = \hat{I} cos cos{\beta}) + i\hat{sigma}_{z} sin sin{\beta}

= (cos cos{\beta} 0 0 cos cos{\beta}) + i(sin sin{\beta} 0 0 -sin sin{\beta})

= (cos cos{\beta} + i sin sin{\beta} 0 0 cos cos{\beta} - i sin sin{\beta})

Therefore, T\left(\beta) = e^{i\beta} 0 0 e^{-i\beta}\right)

Leave a Reply

%d bloggers like this: